What is int cos^2(4x)dx cos2(4x)dx?

1 Answer
Feb 7, 2016

1/16sin(8x)+x/2+C116sin(8x)+x2+C

Explanation:

In this instance we need to use a trig identity to re-express cos^2(4x)cos2(4x) in a form which can be integrated. We will use:

cos^2(a) = 1/2cos(2a)+1/2cos2(a)=12cos(2a)+12

from the double angle formulae.

So re expressing the integral gives us:

int cos^2(4x)dx = int 1/2cos(8x)+1/2dxcos2(4x)dx=12cos(8x)+12dx

And now we can integrate easily to get:

int 1/2cos(8x)+1/2dx = 1/16sin(8x)+x/2+C12cos(8x)+12dx=116sin(8x)+x2+C