What is the integral of int sin(3x) * cos(4x) dx?

1 Answer
Dec 2, 2016

The answer is =-cos7x/14-cosx/2 +C

Explanation:

sin(a+b)=sinacosb+sinbcosa

sin(a-b)=sinacosb-sinbcosa

sin(a+b)+sin(a-b)=2sinacosb

sinacosb=1/2(sin(a+b)+sin(a-b))

Therefore

cos3xsin4x=1/2(sin(3x+4x)+sin(4x-3x))

=1/2(sin7x+sinx)

So,

intcos3xsin4xdx=1/2int(sin7x+sinx)

=-1/2((cos7x)/7+cosx)+C

=-(cos7x)/14-cosx/2 +C