What is the integral of x * cos^2 (x)?

1 Answer
Jun 30, 2016

= 1/4 x sin 2x + 1/8 cos 2x + x^2/4+ C

Explanation:

int dx qquad x * cos^2 (x)

it will be easier first to use the double angle formula cos 2A = 2 cos^2 A - 1 or cos^2 A = (cos 2A + 1)/2

so we are looking at

1/2 int dx qquad color{red}{x cos 2x} + x

as it's a composite term, we should do the red bit using IBP ie

int u v' = uv - int u' v

here

u = x, u' = 1
v' = cos 2x, v = 1/2 sin 2x

so

1/2 int dx qquad color{red}{x cos 2x} + x

= 1/2 { 1/2 x sin 2x - int dx qquad 1/2 sin 2x +int dx qquad x }

= 1/2 { 1/2 x sin 2x + 1/4 cos 2x + x^2/2 } + C

= 1/4 x sin 2x + 1/8 cos 2x + x^2/4+ C