How do you find the integral of int cos^3(x) sin^4(x) dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Sasha P. Sep 18, 2015 (sin^5 x)/5 + (sin^7 x)/7 +C Explanation: intcos^3 xsin^4 xdx=intcosxcos^2 xsin^4 xdx= intcosx(1-sin^2 x)sin^4 xdx=I sinx=t => cosxdx=dt I=int(1-t^2)t^4dt=t^5/5-t^7/7+C= I=(sin^5 x)/5 + (sin^7 x)/7 +C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 3517 views around the world You can reuse this answer Creative Commons License