Note that:
1/(1+secx ) = 1/(1+1/cosx) 11+secx=11+1cosx
use now the parametric formula:
cosx = (1-tan^2(x/2))/(1+tan^2(x/2))cosx=1−tan2(x2)1+tan2(x2)
1/(1+secx ) = 1/(1+(1+tan^2(x/2))/(1-tan^2(x/2))) 11+secx=11+1+tan2(x2)1−tan2(x2)
1/(1+secx ) = (1-tan^2(x/2))/((1-tan^2(x/2))+(1+tan^2(x/2))) 11+secx=1−tan2(x2)(1−tan2(x2))+(1+tan2(x2))
1/(1+secx ) = (1-tan^2(x/2))/2 11+secx=1−tan2(x2)2
1/(1+secx ) = 1/2 - 1/2(sec^2(x/2) -1) 11+secx=12−12(sec2(x2)−1)
1/(1+secx ) = 1 - 1/2sec^2(x/2) 11+secx=1−12sec2(x2)
Then:
int dx/(1+secx ) = int (1 - 1/2sec^2(x/2))dx ∫dx1+secx=∫(1−12sec2(x2))dx
int dx/(1+secx ) = int dx - int sec^2(x/2)d(x/2) ∫dx1+secx=∫dx−∫sec2(x2)d(x2)
int dx/(1+secx ) = x -tan(x/2)+C ∫dx1+secx=x−tan(x2)+C