How do you find the integral of int 1/(1 + sec(x))11+sec(x)?

1 Answer
May 8, 2018

int dx/(1+secx ) = x -tan(x/2)+C dx1+secx=xtan(x2)+C

Explanation:

Note that:

1/(1+secx ) = 1/(1+1/cosx) 11+secx=11+1cosx

use now the parametric formula:

cosx = (1-tan^2(x/2))/(1+tan^2(x/2))cosx=1tan2(x2)1+tan2(x2)

1/(1+secx ) = 1/(1+(1+tan^2(x/2))/(1-tan^2(x/2))) 11+secx=11+1+tan2(x2)1tan2(x2)

1/(1+secx ) = (1-tan^2(x/2))/((1-tan^2(x/2))+(1+tan^2(x/2))) 11+secx=1tan2(x2)(1tan2(x2))+(1+tan2(x2))

1/(1+secx ) = (1-tan^2(x/2))/2 11+secx=1tan2(x2)2

1/(1+secx ) = 1/2 - 1/2(sec^2(x/2) -1) 11+secx=1212(sec2(x2)1)

1/(1+secx ) = 1 - 1/2sec^2(x/2) 11+secx=112sec2(x2)

Then:

int dx/(1+secx ) = int (1 - 1/2sec^2(x/2))dx dx1+secx=(112sec2(x2))dx

int dx/(1+secx ) = int dx - int sec^2(x/2)d(x/2) dx1+secx=dxsec2(x2)d(x2)

int dx/(1+secx ) = x -tan(x/2)+C dx1+secx=xtan(x2)+C