How do you find the indefinite integral of ∫cost1+sint? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Noah G Feb 8, 2017 ln|sint+t|+C Explanation: Let u=sint+1. Then du=costdt and dt=ducost. ⇒∫costu⋅ducost ⇒∫1udu ⇒ln|u|+C ⇒ln|sint+t|+C Hopefully this helps! Answer link Related questions How do I evaluate the indefinite integral ∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral ∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral ∫cos5(x)dx ? How do I evaluate the indefinite integral ∫sin2(2t)dt ? How do I evaluate the indefinite integral ∫(1+cos(x))2dx ? How do I evaluate the indefinite integral ∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral ∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral ∫tan2(x)dx ? How do I evaluate the indefinite integral ∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral ∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 6712 views around the world You can reuse this answer Creative Commons License