sinθsin2θsin3θ ?

Evalute:
sinθsin2θsin3θ

1 Answer
Jul 29, 2018

(sinθsin2θsin3θ)dθ=cos(6x)24cos(4x)16cos(2x)8+C

Explanation:

There's a few ways to tackle this problem, but personally I would expand the integrand by using various trigonometric identities, including the product-to-sum identities and double-angle formulas.

Here are the ones I used specifically for this problem:
sinαcosβ=12[sin(αβ)+sin(α+β)]
sinαsinβ=12[cos(αβ)cos(α+β)]
sin2α=2sinαcosα

So, let's use them. You can pick any pair. I picked sinθsin2θ first:

(sinθsin2θ)sin3θdθ
=(12)(cosθ+cos3θ)(sin3θ)dθ
=(12)sin3θcosθsin3θcos3θdθ
=(12)(12)(sin4θ+sin2θ)(12)sin6θdθ
=(14)(sin4θ+sin2θsin6θ)dθ

At this point, it's a simple indefinite integral:

(14)[cos(4θ)4cos(2θ)2+cos(6θ)6]+C

=cos(6x)24cos(4x)16cos(2x)8+C