What's the integral of int cos^2(x) tan^3(x) dxcos2(x)tan3(x)dx?

1 Answer
Apr 2, 2018

-lnabs(cosx)+1/2cos^2x+Cln|cosx|+12cos2x+C

Explanation:

cos^2(x) tan^3(x) = cos^2xsin^3x/cos^3xcos2(x)tan3(x)=cos2xsin3xcos3x

= sin^2x/cosx sinx=sin2xcosxsinx

= (1-cos^2x)/cosx sinx=1cos2xcosxsinx

int cos^2(x) tan^3(x) dx = int (1/cosx + cosx) sinx dxcos2(x)tan3(x)dx=(1cosx+cosx)sinxdx

= -lnabs(cosx)+1/2cos^2x+C=ln|cosx|+12cos2x+C