What is the integral of tan6(x)sec6(x)?

1 Answer
Mar 25, 2016

tan11(x)11+2tan9(x)9+tan7(x)7+C

Explanation:

We will want to approach this so as to leave a sec2(x) term hanging around in the integral. (This will act as du if we set u=tan(x)). If we convert the remaining sec4(x) into functions of tan(x) through Pythagorean identities, then we can use u substitution.

tan6(x)sec6(x)dx

=tan6(x)sec4(x)sec2(x)dx

=tan6(x)(sec2(x))2sec2(x)dx

=tan6(x)(1+tan2(x))2sec2(x)dx

=tan6(x)(1+2tan2(x)+tan4(x))sec2(x)dx

=(tan10(x)+2tan8(x)+tan6(x))sec2(x)dx

Now, let u=tanx which implies du=sec2(x)dx.

Substituting, we see that

=(u10+2u8+u6)du

Integrating term by term, this gives

=u1111+2u99+u77+C

Since u=tan(x):

=tan11(x)11+2tan9(x)9+tan7(x)7+C