What is the integral of ∫tan6(x)sec6(x)?
1 Answer
Mar 25, 2016
Explanation:
We will want to approach this so as to leave a
∫tan6(x)sec6(x)dx
=∫tan6(x)sec4(x)sec2(x)dx
=∫tan6(x)(sec2(x))2sec2(x)dx
=∫tan6(x)(1+tan2(x))2sec2(x)dx
=∫tan6(x)(1+2tan2(x)+tan4(x))sec2(x)dx
=∫(tan10(x)+2tan8(x)+tan6(x))sec2(x)dx
Now, let
Substituting, we see that
=∫(u10+2u8+u6)du
Integrating term by term, this gives
=u1111+2u99+u77+C
Since
=tan11(x)11+2tan9(x)9+tan7(x)7+C