How do you find the antiderivative of (sinx)3?

1 Answer
Nov 9, 2016

=cos3x3cosx+C C is a constant.

Explanation:

(sinx)3dx

sinx(sinx)2dx

Let u=cosx then du=sinxdx sinxdx=du

Knowing the trigonometric identity:

cos2x+sin2x=1

sin2x=1cos2x

(du)sin2x

=(1cos2x)du

=(1u2)du

=u21du

=u2du1du

=u33u+C

Substituting u=cosx

=cos3x3cosx+C C is a constant.