How do you find the antiderivative of (cosx)^2/(sinx)(cosx)2sinx?

1 Answer
Aug 11, 2016

-ln(abs(cscx+cotx))+cosx+Cln(|cscx+cotx|)+cosx+C

Explanation:

We have:

intcos^2x/sinxdxcos2xsinxdx

Through the Pythagorean identity:

=int(1-sin^2x)/sinxdx=1sin2xsinxdx

Split the integral:

=intcscxdx-intsinxdx=cscxdxsinxdx

These are both well-known integrals:

=-ln(abs(cscx+cotx))+cosx+C=ln(|cscx+cotx|)+cosx+C