How do you find the antiderivative of (cosx)^2/(sinx)(cosx)2sinx?
1 Answer
Aug 11, 2016
Explanation:
We have:
intcos^2x/sinxdx∫cos2xsinxdx
Through the Pythagorean identity:
=int(1-sin^2x)/sinxdx=∫1−sin2xsinxdx
Split the integral:
=intcscxdx-intsinxdx=∫cscxdx−∫sinxdx
These are both well-known integrals:
=-ln(abs(cscx+cotx))+cosx+C=−ln(|cscx+cotx|)+cosx+C