What is the Integral of tan^3 3x * sec3x dxtan33xsec3xdx?

1 Answer
May 24, 2018

inttan^3 3xsec3x"d"x=1/9sec^3 3x-1/3sec3x+"c"tan33xsec3xdx=19sec33x13sec3x+c

Explanation:

For inttan^3 3xsec3x"d"xtan33xsec3xdx, let u=3xu=3x and "d"u=3"d"xdu=3dx

Then inttan^3 3xsec3x"d"x=1/3inttan^3usecu"d"utan33xsec3xdx=13tan3usecudu

Now, use tan^2x=sec^2x-1tan2x=sec2x1

1/3inttan^3usecu"d"u=1/3int(sec^2u-1)tanusecu"d"u=1/3intsec^3utanu"d"u-1/3intsecutanu"d"u13tan3usecudu=13(sec2u1)tanusecudu=13sec3utanudu13secutanudu

For the first integral, we use the reverse chain rule, noting that d/dx1/3sec^3u=sec^3utanuddx13sec3u=sec3utanu and for the second, we use the fundamental theorem of calculus. So,

1/3intsec^3utanu"d"u-1/3intsecutanu"d"u=1/9sec^3u-1/3secu13sec3utanudu13secutanudu=19sec3u13secu

Now we substitute u=3xu=3x to get a final answer of

1/9sec^3 3x-1/3sec3x+"c"19sec33x13sec3x+c