For inttan^3 3xsec3x"d"x∫tan33xsec3xdx, let u=3xu=3x and "d"u=3"d"xdu=3dx
Then inttan^3 3xsec3x"d"x=1/3inttan^3usecu"d"u∫tan33xsec3xdx=13∫tan3usecudu
Now, use tan^2x=sec^2x-1tan2x=sec2x−1
1/3inttan^3usecu"d"u=1/3int(sec^2u-1)tanusecu"d"u=1/3intsec^3utanu"d"u-1/3intsecutanu"d"u13∫tan3usecudu=13∫(sec2u−1)tanusecudu=13∫sec3utanudu−13∫secutanudu
For the first integral, we use the reverse chain rule, noting that d/dx1/3sec^3u=sec^3utanuddx13sec3u=sec3utanu and for the second, we use the fundamental theorem of calculus. So,
1/3intsec^3utanu"d"u-1/3intsecutanu"d"u=1/9sec^3u-1/3secu13∫sec3utanudu−13∫secutanudu=19sec3u−13secu
Now we substitute u=3xu=3x to get a final answer of
1/9sec^3 3x-1/3sec3x+"c"19sec33x−13sec3x+c