How do you find the antiderivative of cos^3 x? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Euan S. Jul 5, 2016 int cos^3x dx = sinx - 1/3sin^3x + C Explanation: cos^3x = cosx*cos^2x = cosx(1 - sin^2x) implies int cos^3xdx = int cosx(1 - sin^2x)dx Let u = sinx implies du = cosxdx int (1-u^2)du = u - 1/3u^3 + C = sinx - 1/3sin^3x + C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1435 views around the world You can reuse this answer Creative Commons License