How do you find the integral of tanh^3x dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Guillaume L. Aug 12, 2018 inttanh(x)^3dx=ln(|cosh(x)|)+1/2sech(x)^2+C, C in RR Explanation: I=inttanh(x)^3dx =intsinh(x)^3/(cosh(x)^3)dx Because sinh(x)^2=cosh(x)^2-1, I=int(sinh(x)(cosh(x)^2-1))/(cosh(x)^3)dx Now let u=cosh(x) du=sinh(x)dx So: I=int(u^2-1)/u^3du =int1/udu-int1/u^3du =ln(|u|)+1/(2u^2)+C, C in RR =ln(|cosh(x)|)+1/2sech(x)^2+C, C in RR \0/ Here's our answer ! Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 7417 views around the world You can reuse this answer Creative Commons License