How do you find the integral of tanh^3x dx?

1 Answer
Aug 12, 2018

inttanh(x)^3dx=ln(|cosh(x)|)+1/2sech(x)^2+C, C in RR

Explanation:

I=inttanh(x)^3dx

=intsinh(x)^3/(cosh(x)^3)dx

Because sinh(x)^2=cosh(x)^2-1,

I=int(sinh(x)(cosh(x)^2-1))/(cosh(x)^3)dx

Now let u=cosh(x)

du=sinh(x)dx

So:

I=int(u^2-1)/u^3du

=int1/udu-int1/u^3du

=ln(|u|)+1/(2u^2)+C, C in RR

=ln(|cosh(x)|)+1/2sech(x)^2+C, C in RR

\0/ Here's our answer !