How do you find the integral of #tanh^3x dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Guillaume L. Aug 12, 2018 #inttanh(x)^3dx=ln(|cosh(x)|)+1/2sech(x)^2+C#, #C in RR# Explanation: #I=inttanh(x)^3dx# #=intsinh(x)^3/(cosh(x)^3)dx# Because #sinh(x)^2=cosh(x)^2-1#, #I=int(sinh(x)(cosh(x)^2-1))/(cosh(x)^3)dx# Now let #u=cosh(x)# #du=sinh(x)dx# So: #I=int(u^2-1)/u^3du# #=int1/udu-int1/u^3du# #=ln(|u|)+1/(2u^2)+C#, #C in RR# #=ln(|cosh(x)|)+1/2sech(x)^2+C#, #C in RR# \0/ Here's our answer ! Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 7032 views around the world You can reuse this answer Creative Commons License