How to solve ∫ sec^3x dx ?

1 Answer
Oct 1, 2015

int sec^3xdx=1/2(secxtanx + ln|secx+tanx|)+C

Explanation:

Let's solve int secxdx:

t=secx+tanx => dt=(secxtanx+sec^2x)dx

dt=secx(secx+tanx)dx

int secxdx = int secx (secx+tanx)/(secx+tanx) dx=int dt/t
int secxdx = ln|secx+tanx| +C

I = int sec^3xdx = int sec^2x secxdx

u=secx => du=secxtanxdx
dv=sec^2xdx => v=int sec^2xdx=tanx

int sec^3xdx=secxtanx - int tanx secx tanx dx

int sec^3xdx=secxtanx - int tan^2x secx dx

int sec^3xdx=secxtanx - int (sec^2x-1) secx dx

int sec^3xdx=secxtanx - int (sec^3x-secx) dx

int sec^3xdx=secxtanx - int sec^3x dx + int secx dx

int sec^3xdx + int sec^3x dx=secxtanx + ln|secx+tanx|

2 int sec^3xdx=secxtanx + ln|secx+tanx|

int sec^3xdx=1/2(secxtanx + ln|secx+tanx|)+C