What is the Integral of ((sec x)^3/tan x) dx((secx)3tanx)dx?

2 Answers
Jun 13, 2018

I=ln|cscx-cotx|+secx+CI=ln|cscxcotx|+secx+C

Explanation:

Here,

I=int(secx)^3/tanx dxI=(secx)3tanxdx

=int(secx(color(red)(sec^2x)))/tanx dx=secx(sec2x)tanxdx

=int(secx(color(red)(1+tan^2x)))/tanx dx=secx(1+tan2x)tanxdx

=int(secx+secxtan^2x)/tanx dx=secx+secxtan2xtanxdx

=intsecx/tanxdx+int(secxtan^2x)/tanx dx=secxtanxdx+secxtan2xtanxdx

=int(1/cosx)/(sinx/cosx) dx+intsecxtanx dx=1cosxsinxcosxdx+secxtanxdx

=intcscxdx+intsecxtanxdx=cscxdx+secxtanxdx

=ln|cscx-cotx|+secx+C=ln|cscxcotx|+secx+C

Jun 13, 2018

1/2ln|(cosx-1)/(cosx+1)|+1/cosx+C, or, 12lncosx1cosx+1+1cosx+C,or,,

lnsqrt|((cosx-1)/(cosx+1))|+secx+C, or, ln(cosx1cosx+1)+secx+C,or,,

ln|tan(x/2)|+secx+Clntan(x2)+secx+C.

Explanation:

Suppose that, I=intsec^3x/tanxdxI=sec3xtanxdx.

:. I=int1/cos^3x*cosx/sinxdx=int1/(cos^2xsinx)dx.

=intsinx/(cos^2x*sin^2x)dx,

=intsinx/{cos^2x(1-cos^2x)}dx,

Letting cosx=t," so that, "-sinxdx=dt, we have,

I=int(-1)/(t^2(1-t^2))dt=int1/{t^2(t^2-1)}dt,

=int{(t^2-(t^2-1)}/{t^2(t^2-1)}dt,

=int{t^2/{t^2(t^2-1)}-(t^2-1)/{t^2(t^2-1)}}dt,

=int{1/(t^2-1)-1/t^2}dt,

={1/2ln|(t-1)/(t+1)|-(t^(-2+1)/(-2+1)},

=1/2ln|(t-1)/(t+1)|+1/t.

Since, t=cosx, we have,

I=1/2ln|(cosx-1)/(cosx+1)|+1/cosx,

=lnsqrt|((cosx-1)/(cosx+1))|+secx,

rArr I=ln|tan(x/2)|+secx+C.