Suppose that, I=intsec^3x/tanxdxI=∫sec3xtanxdx.
:. I=int1/cos^3x*cosx/sinxdx=int1/(cos^2xsinx)dx.
=intsinx/(cos^2x*sin^2x)dx,
=intsinx/{cos^2x(1-cos^2x)}dx,
Letting cosx=t," so that, "-sinxdx=dt, we have,
I=int(-1)/(t^2(1-t^2))dt=int1/{t^2(t^2-1)}dt,
=int{(t^2-(t^2-1)}/{t^2(t^2-1)}dt,
=int{t^2/{t^2(t^2-1)}-(t^2-1)/{t^2(t^2-1)}}dt,
=int{1/(t^2-1)-1/t^2}dt,
={1/2ln|(t-1)/(t+1)|-(t^(-2+1)/(-2+1)},
=1/2ln|(t-1)/(t+1)|+1/t.
Since, t=cosx, we have,
I=1/2ln|(cosx-1)/(cosx+1)|+1/cosx,
=lnsqrt|((cosx-1)/(cosx+1))|+secx,
rArr I=ln|tan(x/2)|+secx+C.