How do you find the integral of 1 / (1 + sin^2 x)11+sin2x?
1 Answer
Explanation:
I=int1/(1+sin^2x)dxI=∫11+sin2xdx
Notice that dividing by
I=int(1/cos^2x)/((1+sin^2x)/cos^2x)dx=intsec^2x/(sec^2x+tan^2x)dxI=∫1cos2x1+sin2xcos2xdx=∫sec2xsec2x+tan2xdx
Recall that
I=intsec^2x/((1+tan^2x)+tan^2x)dx=intsec^2x/(1+2tan^2x)dxI=∫sec2x(1+tan2x)+tan2xdx=∫sec2x1+2tan2xdx
We will use the substitution
I=int(1/sqrt2sec^2theta)/(1+2(1/sqrt2tantheta)^2)d theta=1/sqrt2int(sec^2theta)/(1+2(1/2tan^2theta))d thetaI=∫1√2sec2θ1+2(1√2tanθ)2dθ=1√2∫sec2θ1+2(12tan2θ)dθ
I=1/sqrt2int(sec^2theta)/(1+tan^2theta)d thetaI=1√2∫sec2θ1+tan2θdθ
Using the same trigonometric identity:
I=1/sqrt2intsec^2theta/sec^2thetad theta=1/sqrt2intd theta=1/sqrt2theta+CI=1√2∫sec2θsec2θdθ=1√2∫dθ=1√2θ+C
From
I=arctan(sqrt2tanx)/sqrt2+CI=arctan(√2tanx)√2+C