How do you find the integral of 1 / (1 + sin^2 x)11+sin2x?

1 Answer
Oct 20, 2016

arctan(sqrt2tanx)/sqrt2+Carctan(2tanx)2+C

Explanation:

I=int1/(1+sin^2x)dxI=11+sin2xdx

Notice that dividing by cos^2(x)cos2(x) will get us working with tanxtanx and secxsecx functions, which are derivatives of themselves:

I=int(1/cos^2x)/((1+sin^2x)/cos^2x)dx=intsec^2x/(sec^2x+tan^2x)dxI=1cos2x1+sin2xcos2xdx=sec2xsec2x+tan2xdx

Recall that sec^2x=1+tan^2xsec2x=1+tan2x:

I=intsec^2x/((1+tan^2x)+tan^2x)dx=intsec^2x/(1+2tan^2x)dxI=sec2x(1+tan2x)+tan2xdx=sec2x1+2tan2xdx

We will use the substitution tanx=1/sqrt2tanthetatanx=12tanθ. This implies that sec^2xdx=1/sqrt2sec^2thetad thetasec2xdx=12sec2θdθ. Substituting:

I=int(1/sqrt2sec^2theta)/(1+2(1/sqrt2tantheta)^2)d theta=1/sqrt2int(sec^2theta)/(1+2(1/2tan^2theta))d thetaI=12sec2θ1+2(12tanθ)2dθ=12sec2θ1+2(12tan2θ)dθ

I=1/sqrt2int(sec^2theta)/(1+tan^2theta)d thetaI=12sec2θ1+tan2θdθ

Using the same trigonometric identity:

I=1/sqrt2intsec^2theta/sec^2thetad theta=1/sqrt2intd theta=1/sqrt2theta+CI=12sec2θsec2θdθ=12dθ=12θ+C

From tanx=1/sqrt2tanthetatanx=12tanθ we see that sqrt2tanx=tantheta2tanx=tanθ and theta=arctan(sqrt2tanx)θ=arctan(2tanx). Thus:

I=arctan(sqrt2tanx)/sqrt2+CI=arctan(2tanx)2+C