How do you integrate √3sinx(cosx)0.5? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer A. S. Adikesavan May 4, 2016 ∫√3sinx(cosx)0.5dx=−2√33(cosx)1.5+C. Explanation: The integral is −√3∫(cosx)0.5d(cosx) =−√3(cosx)0.5+10.5+1+C =−2√33(cosx)1.5+C Answer link Related questions How do I evaluate the indefinite integral ∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral ∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral ∫cos5(x)dx ? How do I evaluate the indefinite integral ∫sin2(2t)dt ? How do I evaluate the indefinite integral ∫(1+cos(x))2dx ? How do I evaluate the indefinite integral ∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral ∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral ∫tan2(x)dx ? How do I evaluate the indefinite integral ∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral ∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 2176 views around the world You can reuse this answer Creative Commons License