What is the integral of cos(x) / sqrt(1+sin^2(x)? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Ratnaker Mehta Jul 11, 2016 ln|sinx+sqrt(1+sin^2x)|+C. Explanation: Let I=int{cosx/sqrt(1+sin^2x)}dx Substitute sinx = t, so that, cosxdx=dt. Hence, I=int1/sqrt(1+t^2)dt=ln|t+sqrt(1+t^2|, or, I=ln|sinx+sqrt(1+sin^2x)|+C. Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 9861 views around the world You can reuse this answer Creative Commons License