How do you evaluate the integral int cscthetacscθ?

1 Answer
Mar 15, 2017

intcsc(theta)d theta=-lnabs(csc(theta)+cot(theta))+Ccsc(θ)dθ=ln|csc(θ)+cot(θ)|+C

Explanation:

If you know the process of finding intsec(theta)d thetasec(θ)dθ, this will be very similar.

Very unintuitively, make the modification:

intcsc(theta)d theta=intcsc(theta)((csc(theta)+cot(theta))/(csc(theta)+cot(theta)))d theta=int(csc^2(theta)+csc(theta)cot(theta))/(csc(theta)+cot(theta))d thetacsc(θ)dθ=csc(θ)(csc(θ)+cot(θ)csc(θ)+cot(θ))dθ=csc2(θ)+csc(θ)cot(θ)csc(θ)+cot(θ)dθ

Now let u=csc(theta)+cot(theta)u=csc(θ)+cot(θ). Knowing their derivatives, we can say that du=(-csc(theta)cot(theta)-csc^2(theta))d thetadu=(csc(θ)cot(θ)csc2(θ))dθ.

Note that the numerator of the integral is just the derivative of its denominator times -11.

=-int(-csc(theta)cot(theta)-csc^2(theta))/(csc(theta)+cot(theta))d theta=-int(du)/u=-lnabsu=csc(θ)cot(θ)csc2(θ)csc(θ)+cot(θ)dθ=duu=ln|u|

Reversing the substitution:

intcsc(theta)d theta=-lnabs(csc(theta)+cot(theta))+Ccsc(θ)dθ=ln|csc(θ)+cot(θ)|+C