Question #178d6 Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Eddie Aug 31, 2016 =11000ln(x1000−x)+C Explanation: ∫1x(1000−x)dx partial fractions is easiest/ most obvious way =11000∫1000x(1000−x)dx =11000∫1000−x+xx(1000−x)dx =11000∫1000−xx(1000−x)+xx(1000−x)dx =11000∫1x+11000−xdx =11000(lnx−ln(1000−x)+C =11000ln(x1000−x)+C Answer link Related questions How do I evaluate the indefinite integral ∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral ∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral ∫cos5(x)dx ? How do I evaluate the indefinite integral ∫sin2(2t)dt ? How do I evaluate the indefinite integral ∫(1+cos(x))2dx ? How do I evaluate the indefinite integral ∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral ∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral ∫tan2(x)dx ? How do I evaluate the indefinite integral ∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral ∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1506 views around the world You can reuse this answer Creative Commons License