How do you find the antiderivative of cos^4 x dx?

2 Answers
Jul 23, 2017

to find this integration or anti-derivative we use Reduction formula

Explanation:

Reduction formula
intcos^n xdx=(cos^(n-1) xsinx)/n +(n-1)/n intcos^(n-2) x dx

using n=4 we get

intcos^4 xdx=(cos^(4-1) xsinx)/4 +(4-1)/4 intcos^(4-2) x dx
intcos^4 xdx=(cos^(3) xsinx)/4 +(3)/4 intcos^(2) x dx
intcos^4 xdx=(cos^(3) xsinx)/4 +(3)/4 int(1/2 cos2x+1/2)dx)
intcos^4 xdx=(cos^(3) xsinx)/4 +(3)/8 int(cos2x)dx+3/8 int1dx)
intcos^4 xdx=(cos^(3) xsinx)/4 +(3)/8 sinx cosx+3/8 x
intcos^4 xdx=1/32 (12x+8sin(2x)+sin4x)+C

that is the right answer.

Jul 23, 2017

1/32{12x+8sin2x+sin4x}+C.

Explanation:

Recall that, cos2x=2cos^2x-1," so that, "cos^2x=(1+cos2x)/2.

:. cos^4x=((1+cos2x)/2)^2,

=1/4{1+2cos2x+cos^2(2x)},

=1/4{1+2cos2x+(1+cos4x)/2},

=1/8(3+4cos2x+cos4x).

rArr intcos^4xdx=1/8int(3+4cos2x+cos4x)dx,

=1/8{3x+4*sin(2x)/2+sin(4x)/4},

=1/32{12x+8sin2x+sin4x}+C.