What is the integral of (sinx)^3 dx from 0 to pi/2? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer George C. Aug 7, 2015 2/3 Explanation: int_0^(pi/2) sin^3x dx = int_0^(pi/2) (1-cos^2x)sin x dx =int_0^(pi/2)(sin x -cos^2x sin x) dx =(-cos x+1/3cos^3 x )|_0^(pi/2) =(-0+1/3*0)-(-1+1/3) =2/3 Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 49026 views around the world You can reuse this answer Creative Commons License