How do you find the integral of (Sin2x) / (1 + cos^2x) dx?

2 Answers
Mar 18, 2018

=> -ln|cos2x + 3 | + c

Explanation:

Use trig identities...

cos2x = cos^2 x - sin^2 x = 2cos^2 x -1

=> ( cos2x +1 )/2 +1 = cos^2 x + 1

=> ( cos2x + 3 )/2 = cos^2 x + 1

=> int (sin2x) / (( cos2x +3 )/2) dx

=> int (2sin2x )/ (cos2x +3 ) dx

Let u = cos2x +3

du = -2sin2x dx

=> -du = 2sin2x dx

=> -int (du)/u

=> -ln|u| + c

=> -ln|cos2x + 3 | + c

c - "constant"

Mar 18, 2018

Second method

Explanation:

u = 1 + cos^2 x

=> du = 2cosx * -sinx dx

=> -du = 2sinxcosx dx

=> -du = sin2x dx

=> -int (du)/u

=> -ln|u| + c

=> -ln|1+cos^2 x | + c