start by multiplying by (csc2x+cot2x)/(csc2x+cot2x)csc2x+cot2xcsc2x+cot2x
intcscx2xdx=intcsc 2x xx(csc2x+cot2x)/(csc2x+cot2x)dx∫cscx2xdx=∫csc2x×csc2x+cot2xcsc2x+cot2xdx
=int[(csc^2 2x+csc2xcot2x)/(csc2x+cot2x)]dx=∫[csc22x+csc2xcot2xcsc2x+cot2x]dx
now
d/(dx)(csc2x)=-2cot2xcsc2xddx(csc2x)=−2cot2xcsc2x
and
d/(dx)(cot2x)=-2csc^2 2xddx(cot2x)=−2csc22x
also
int((f'(x))/f(x))dx=ln|f(x)|+C
using these results we notice that differentiating the denominator:
d/(dx)(csc2x+cot2x)=-2cot2xcsc2x-2csc^2 2x
=-2(csc^2 2x+csc2x+cot2x)=-2 xx" numerator"
:. intcscx2xdx=-1/2ln| (csc2x+cot2x)|+C