How do you find the indefinite integral of int csc2xcsc2x?

1 Answer
May 7, 2017

intcscx2xdx=-1/2ln| (csc2x+cot2x)|+Ccscx2xdx=12ln|(csc2x+cot2x)|+C

Explanation:

start by multiplying by (csc2x+cot2x)/(csc2x+cot2x)csc2x+cot2xcsc2x+cot2x

intcscx2xdx=intcsc 2x xx(csc2x+cot2x)/(csc2x+cot2x)dxcscx2xdx=csc2x×csc2x+cot2xcsc2x+cot2xdx

=int[(csc^2 2x+csc2xcot2x)/(csc2x+cot2x)]dx=[csc22x+csc2xcot2xcsc2x+cot2x]dx

now

d/(dx)(csc2x)=-2cot2xcsc2xddx(csc2x)=2cot2xcsc2x

and

d/(dx)(cot2x)=-2csc^2 2xddx(cot2x)=2csc22x

also

int((f'(x))/f(x))dx=ln|f(x)|+C

using these results we notice that differentiating the denominator:

d/(dx)(csc2x+cot2x)=-2cot2xcsc2x-2csc^2 2x

=-2(csc^2 2x+csc2x+cot2x)=-2 xx" numerator"

:. intcscx2xdx=-1/2ln| (csc2x+cot2x)|+C