We know that,
#color(red)((1)sin^2theta+ cos^2theta=1#
#color(blue)((2)1/costheta=sectheta and sintheta/costheta=tantheta#
#color(violet)((3)intsec^2xdx=tanx+c#
#color(violet)((4)intsecxtanxdx=secx+c#
Here,
#I=int1/(1+sinx)dx=int((1-sinx))/((1+sinx)(1-sinx))dx#
#=>I=int(1-sinx)/(1-sin^2x)dx#
#=int(1-sinx)/cos^2xdx...tocolor(red)(Apply(1)#
#=int[1/cos^2x-sinx/cos^2x]dx#
#=int[sec^2x-secxtanx]dx...tocolor(blue)(Apply(2)#
Using , #color(violet)((3) and (4)#, we get
#I=tanx-secx+c#