What is the antiderivative of #1/ (1+sinx) dx#?

1 Answer
May 8, 2018

#I=tanx-secx+c#

Explanation:

We know that,
#color(red)((1)sin^2theta+ cos^2theta=1#
#color(blue)((2)1/costheta=sectheta and sintheta/costheta=tantheta#
#color(violet)((3)intsec^2xdx=tanx+c#
#color(violet)((4)intsecxtanxdx=secx+c#
Here,

#I=int1/(1+sinx)dx=int((1-sinx))/((1+sinx)(1-sinx))dx#

#=>I=int(1-sinx)/(1-sin^2x)dx#

#=int(1-sinx)/cos^2xdx...tocolor(red)(Apply(1)#

#=int[1/cos^2x-sinx/cos^2x]dx#

#=int[sec^2x-secxtanx]dx...tocolor(blue)(Apply(2)#

Using , #color(violet)((3) and (4)#, we get

#I=tanx-secx+c#