What is the antiderivative of 1/(2+sinx)12+sinx?

1 Answer
Jun 7, 2018

I=2/sqrt3tan^-1((2tan(x/2)+1)/sqrt3)+cI=23tan1(2tan(x2)+13)+c

Explanation:

I=int1/(2+sinx)dxI=12+sinxdx

Subst. tan(x/2)=t=>sec^2(x/2)*1/2dx=dttan(x2)=tsec2(x2)12dx=dt

=>[1+tan^2(x/2)]dx=2dt=>dx=(2dt)/(1+t^2)[1+tan2(x2)]dx=2dtdx=2dt1+t2

I=int1/(2+(2t)/(1+t^2))xx(2dt)/(1+t^2)I=12+2t1+t2×2dt1+t2

I=int1/(2+2t^2+2t)xx2dtI=12+2t2+2t×2dt

=int1/(t^2+t+1)dt=1t2+t+1dt

=int1/(t^2+t+1/4 +3/4)dt=1t2+t+14+34dt

=int1/((t+1/2)^2+(sqrt3/2)^2)dt=1(t+12)2+(32)2dt

But, color(red)(int1/(x^2+a^2)dx=1/atan^-1(x/a)+c1x2+a2dx=1atan1(xa)+c

:.I=1/(sqrt3/2)tan^-1((t+1/2)/(sqrt3/2))+c

I=2/sqrt3tan^-1((2t+1)/sqrt3)+c

Subst. back , t=tan(x/2) ,we get

I=2/sqrt3tan^-1((2tan(x/2)+1)/sqrt3)+c