I=int1/(2+sinx)dxI=∫12+sinxdx
Subst. tan(x/2)=t=>sec^2(x/2)*1/2dx=dttan(x2)=t⇒sec2(x2)⋅12dx=dt
=>[1+tan^2(x/2)]dx=2dt=>dx=(2dt)/(1+t^2)⇒[1+tan2(x2)]dx=2dt⇒dx=2dt1+t2
I=int1/(2+(2t)/(1+t^2))xx(2dt)/(1+t^2)I=∫12+2t1+t2×2dt1+t2
I=int1/(2+2t^2+2t)xx2dtI=∫12+2t2+2t×2dt
=int1/(t^2+t+1)dt=∫1t2+t+1dt
=int1/(t^2+t+1/4 +3/4)dt=∫1t2+t+14+34dt
=int1/((t+1/2)^2+(sqrt3/2)^2)dt=∫1(t+12)2+(√32)2dt
But, color(red)(int1/(x^2+a^2)dx=1/atan^-1(x/a)+c∫1x2+a2dx=1atan−1(xa)+c
:.I=1/(sqrt3/2)tan^-1((t+1/2)/(sqrt3/2))+c
I=2/sqrt3tan^-1((2t+1)/sqrt3)+c
Subst. back , t=tan(x/2) ,we get
I=2/sqrt3tan^-1((2tan(x/2)+1)/sqrt3)+c