How do you evaluate the integral int sec^3x/tanxsec3xtanx?

1 Answer
Jan 19, 2017

1/2ln|(cosx-1)/(cosx+1)|+secx+C, or, ln|tan(x/2)|+secx+C12lncosx1cosx+1+secx+C,or,lntan(x2)+secx+C.

Explanation:

Let I=intsec^3x/tanxdx=int(1/cos^3x)(cosx/sinx)dxI=sec3xtanxdx=(1cos3x)(cosxsinx)dx

=int1/(cos^2xsinx)dx=intsinx/(cos^2xsin^2x)dx=1cos2xsinxdx=sinxcos2xsin2xdx

:. I=-int{(-sinx)/{cos^2x(1-cos^2x)}dx

Substituting cosx=t," so that, "-sinxdx=dt, we get,

I=int1/{t^2(t^2-1)}dt=int{t^2-(t^2-1)}/{t^2(t^2-1)}dt

=int[t^2/{t^2(t^2-1)}-(t^2-1)/{t^2(t^2-1)}]dt

=int[1/(t^2-1)-1/t^2]dt

1/2ln|(t-1)/(t+1)|+1/t.

Since, t=cosx, we have,

I=1/2ln|(cosx-1)/(cosx+1)|+secx+C.

Enjoy Maths.!

N.B.:-I can further be simplified as ln|tan(x/2)|+secx+C.