Let I=intsec^3x/tanxdx=int(1/cos^3x)(cosx/sinx)dxI=∫sec3xtanxdx=∫(1cos3x)(cosxsinx)dx
=int1/(cos^2xsinx)dx=intsinx/(cos^2xsin^2x)dx=∫1cos2xsinxdx=∫sinxcos2xsin2xdx
:. I=-int{(-sinx)/{cos^2x(1-cos^2x)}dx
Substituting cosx=t," so that, "-sinxdx=dt, we get,
I=int1/{t^2(t^2-1)}dt=int{t^2-(t^2-1)}/{t^2(t^2-1)}dt
=int[t^2/{t^2(t^2-1)}-(t^2-1)/{t^2(t^2-1)}]dt
=int[1/(t^2-1)-1/t^2]dt
1/2ln|(t-1)/(t+1)|+1/t.
Since, t=cosx, we have,
I=1/2ln|(cosx-1)/(cosx+1)|+secx+C.
Enjoy Maths.!
N.B.:-I can further be simplified as ln|tan(x/2)|+secx+C.