Evaluate the integral? : int 8cos^4 2pit dt
1 Answer
int \ 8cos^4 2pit \ dt = 3x + (sin(4pix))/(pi)+(sin(8pix))/(8pi) + C
Explanation:
We seek:
I = int \ 8cos^4 2pit \ dt
We can utilise the double angle identity:
cos 2A -= cos^2A - sin^2A
\ \ \ \ \ \ \ \ \ \ = cos^2A - (1-cos^2A)
\ \ \ \ \ \ \ \ \ \ = 2cos^2A - 1
From which we get:
cos^2A -= 1/2(1+cos2A)
And squaring we get:
cos^4A -= 1/4(1+cos2A)^2
\ \ \ \ \ \ \ \ \ \ = 1/4(1+2cos2A+cos^2 2A)
\ \ \ \ \ \ \ \ \ \ = 1/4(1+2cos2A+1/2(1+cos4A))
\ \ \ \ \ \ \ \ \ \ = 1/8(2+4cos2A+(1+cos4A))
\ \ \ \ \ \ \ \ \ \ = 1/8(3+4cos2A+cos4A)
To make thing easier to read we can also perform a simple substitution:
Let
u =2pit => (du)/dt = 2pi
So our integral becomes:
I = 8 int \ (cos^4 u) \ 1/(2pi) \ du
\ \ = 8/(2pi) int \ (cos^4 u) du
\ \ = 8/(2pi) int \ (1/8(3+4cos2u+cos4u)) \ du
\ \ = 1/(2pi) int \ 3+4cos2u+cos4u \ du
\ \ = 1/(2pi) {3u + 4/2sin2u+1/4sin4u } + C
\ \ = 3u/(2pi) + (2sin2u)/(2pi)+(1/4sin4u)/(2pi) + C
And restraining the substitution we have:
I = 3(2pix)/(2pi) + (2sin(4pix))/(2pi)+(1/4sin(8pix))/(2pi) + C
\ \ = 3x + (sin(4pix))/(pi)+(sin(8pix))/(8pi) + C