How do you evaluate the integral from 0 to π4 of 1+cos2xcos2xdx?

1 Answer
Apr 10, 2015

Just do simple math : π401+cos2(x)cos2(x)dx

=π401cos2(x)+1dx

=(tan(x)+x)π40

=1+π4

EDIT : Here the "Funny" answer !

π401+cos2(x)cos2(x)dx=π402+cos2(x)1cos2(x)dx

Factorize : π40(1cos2(x))+2cos2(x)dx=π40sin2(x)+2cos2(x)dx

=π40sin2(x)cos2(x)dx+2π401cos2(x)dx

=π401+tan2(x)1dx+2π401cos2(x)dx

=(tan(x)x)π40+2(tan(x))π40

=1+π4+2=1+π4