Question #29a24

1 Answer
Dec 10, 2016

6sin2(x)cos4(x)dx=2tan3(x)+C

Explanation:

6sin2(x)cos4(x)dx

Use the identities tan(x)=sin(x)cos(x)andsec(x)=1cos(x):

#6inttan^2(x)sec^2(x)dx

Let #u = tan(x)", then, "du = sec^2(x)dx

Then the integral becomes:

6u2du

This is a trivial integration:

63u3+C

Reverse the substitution:

2tan3(x)+C

The answer is:

6sin2(x)cos4(x)dx=2tan3(x)+C