What is the integral of int (sinx)/(cos^2x) dx∫sinxcos2xdx?
3 Answers
Mar 13, 2016
It is
Mar 17, 2016
Explanation:
We should try to use substitution by setting
This gives us the integral:
intsinx/cos^2xdx=-int(-sinx)/cos^2xdx=-int1/u^2du=-intu^-2du
From here, use the rule
intu^ndu=u^(n+1)/(n+1)+C
Thus,
-intu^-2du=-u^(-1)/(-1)+C=1/u+C
=1/cosx+C=secx+C
Mar 17, 2016
Explanation:
Alternatively, you could rewrite this in terms of other trigonometric functions:
intsinx/cos^2xdx=int(1/cosx)(sinx/cosx)dx=intsecxtanxdx
If you're familiar with the fact that
intsecxtanxdx=secx+C