What is the integral of int (sinx)/(cos^2x) dxsinxcos2xdx?

3 Answers

It is

int (sinx)/(cos^2x) dx= int [1/cosx]'dx=1/cosx+c=secx+c

Mar 17, 2016

secx+C

Explanation:

We should try to use substitution by setting u=cosx, so du=-sinxdx.

This gives us the integral:

intsinx/cos^2xdx=-int(-sinx)/cos^2xdx=-int1/u^2du=-intu^-2du

From here, use the rule

intu^ndu=u^(n+1)/(n+1)+C

Thus,

-intu^-2du=-u^(-1)/(-1)+C=1/u+C

=1/cosx+C=secx+C

Mar 17, 2016

secx+C

Explanation:

Alternatively, you could rewrite this in terms of other trigonometric functions:

intsinx/cos^2xdx=int(1/cosx)(sinx/cosx)dx=intsecxtanxdx

If you're familiar with the fact that d/dx(secx)=secxtanx, then you'll recognize this common integral formula:

intsecxtanxdx=secx+C