How do you integrate (1-cosx)/(1+cosx)?

1 Answer
Apr 17, 2015

First just do simple math :

int(1-cos(x))/(1+cos(x))dx = (-1-cos(x)+2)/(1+cos(x))dx

Now we can factorize the numerator :

=>int(-(1+cos(x))+2)/(1+cos(x))dx

=>int(-(1+cos(x)))/(1+cos(x))dx+2int1/(1+cos(x))dx

=>int -1dx+2int1/(1+cos(x))dx

Remember that cos^2(x) = 1/2(1+cos(2x))

(From cos(a)cos(b) formula with a = b)

=>2cos^2(x) = (1+cos(2x))

=>2cos^2(1/2x) = 1+cos(x)

=>int -1dx+2int1/2*1/cos^2(1/2x)dx

1/2*1/cos^2(1/2x)dx is exactly the derivate of tan(1/2x)

=>[2tan(1/2x) - x] + C