How do you find the integral of sin^2 (x)cos^2 (x) dxsin2(x)cos2(x)dx?

1 Answer
Jul 19, 2016

1/32(4x-sin4x)+C132(4xsin4x)+C.

Explanation:

Let us note that, sin^2xcos^2x=1/4(sin2x)^2=sin^2(2x)/4sin2xcos2x=14(sin2x)2=sin2(2x)4

Recall that, sin^2theta=(1-cos2theta)/2sin2θ=1cos2θ2

Letting theta=2xθ=2x, we have, sin^2(2x)=(1-cos4x)/2sin2(2x)=1cos4x2

:. intsin^2xcos^2xdx=1/8int(1-cos4x)dx=1/8(x-sin(4x)/4)=1/32(4x-sin4x)+C.