How do you integrate cos2(x)tan3(x)dx?

1 Answer
Jul 23, 2016

I got:

cos2x2ln|cosx|+C

and Wolfram Alpha agrees.


Note that tan3x=sin3xcos3x. Therefore:

cos2xtan3xdx

=sin3xcosxdx

Then, you can use u-substitution. When u=cosx, du=sinxdx. To do that, you need to turn sin2x into 1cos2x.

=(1cos2x)sinxcosxdx

Hence:

=(1cos2x)(sinx)cosxdx

=1u2udu

=u21udu

=u1udu

=u22ln|u|

Re-substitute to get:

cos2x2ln|cosx|+C