How do you integrate ∫cos2(x)tan3(x)dx?
1 Answer
Jul 23, 2016
I got:
cos2x2−ln|cosx|+C
and Wolfram Alpha agrees.
Note that
∫cos2xtan3xdx
=∫sin3xcosxdx
Then, you can use
=∫(1−cos2x)sinxcosxdx
Hence:
=−∫(1−cos2x)(−sinx)cosxdx
=−∫1−u2udu
=∫u2−1udu
=∫u−1udu
=u22−ln|u|
Re-substitute to get:
⇒cos2x2−ln|cosx|+C