What is int tan^3(3x)sec^4(3x)dx?

2 Answers
Mar 17, 2018

1/36tan^4 3x(2tan^2 3x+3)+C, or,

1/36tan^4 3x(2sec^2 3x+1)+C.

Explanation:

Suppose that, I=inttan^3 3xsec^4 3xdx,

=inttan^3 3xsec^2 3x sec^2 3xdx,

=inttan^3 3x(tan^2 3x+1)sec^2 3xdx,

=int(tan^5 3x+tan^3 3x)sec^2 3xdx.

Now, we subst. tan3x=y," so that, "(sec^2 3x)(3)dx=dy.

:. I=1/3int(tan^5 3x+tan^3 3x)3sec^2 3xdx.

=1/3int(y^5+y^3)dy,

=1/3{y^6/6+y^4/4},

=1/3*y^4/12(2y^2+3).

rArr I=1/36tan^4 3x(2tan^2 3x+3)+C, or,

I=1/36tan^4 3x(2sec^2 3x+1)+C.

Enjoy Maths.!

Mar 17, 2018

The answer is =1/12tan^4(3x)+1/18tan^6(3x)+C

Explanation:

Perform the substitition

Let u=3x, =>, du=3dx

Therefore,

I=inttan^3(3x)sec^4(3x)dx=1/3inttan^3usec^4udu

sec^2u=1+tan^2u

So,

I=1/3inttan^3usec^2u(1+tan^2u)du

Let v=tanu, =>, dv=sec^2udu

I=1/3intv^3(1+v^2)dv

=1/3intv^3dv+1/3intv^5dv

=1/12v^4+1/18v^6

=1/12tan^4u+1/18tan^6u

=1/12tan^4(3x)+1/18tan^6(3x)+C