How do you find the integral of #int 1/(t^2-9)^(1/2)dt# from 4 to 6?
2 Answers
# int_4^6 \ 1/sqrt(t^2-9) \ dt = ln ( ( 6+sqrt(27))/(4+sqrt(7)) ) ~~ 0.5215924... #
Explanation:
We seek:
# I = int_4^6 \ 1/sqrt(t^2-9) \ dt #
We can perform a trigonometric substitution, Let
# t = 3sec theta => (dt)/(d theta) = 3sec theta tan theta #
We would normally change the limits of integration from
# int \ 1/sqrt(t^2-9) \ dt = int \ 1/sqrt(9sec^2theta - 9) 3sec theta tan theta \ d theta #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = int \ 1/(3sqrt(sec^2theta - 1)) 3sec theta tan theta \ d theta #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = int \ 1/(sqrt(tan^2theta)) sec theta tan theta \ d theta #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = int \ sec theta \ d theta #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = ln | sec theta + tan theta | + C #
And if we restore the substitution we get:
# int \ 1/sqrt(t^2-9) \ dt = ln | t/3 + sqrt((t/3)^2-1) | + C #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = ln | 1/3(t+sqrt(t^2-9)) | + C #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = ln | t+sqrt(t^2-9) | + ln(1/3) + C #
So then we return to the definite integral:
# I = [ \ \ ln | t + sqrt(t^2-9) | \ \ ]_4^6 #
# \ \ = ln | 6+sqrt(36-9)| - ln | 4+sqrt(16-9)| #
# \ \ = ln ( 6+sqrt(27)) - ln (4+sqrt(7)) #
# \ \ = ln ( ( 6+sqrt(27))/(4+sqrt(7)) ) #
# \ \ ~~ 0.5215924... #
Explanation:
We know that,
Here,
From the graph ,we can say that
is continuous on[4,6]
graph{1/sqrt(x^2-9) [-3.77, 6.23, -0.7, 4.3]}