How do you find the integral of int 1/(t^2-9)^(1/2)dt from 4 to 6?

2 Answers
May 9, 2018

int_4^6 \ 1/sqrt(t^2-9) \ dt = ln ( ( 6+sqrt(27))/(4+sqrt(7)) ) ~~ 0.5215924...

Explanation:

We seek:

I = int_4^6 \ 1/sqrt(t^2-9) \ dt

We can perform a trigonometric substitution, Let

t = 3sec theta => (dt)/(d theta) = 3sec theta tan theta

We would normally change the limits of integration from x to theta, however let us omit this step and consider the corresponding indefinite integral, which after substitution we get:

int \ 1/sqrt(t^2-9) \ dt = int \ 1/sqrt(9sec^2theta - 9) 3sec theta tan theta \ d theta

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = int \ 1/(3sqrt(sec^2theta - 1)) 3sec theta tan theta \ d theta

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = int \ 1/(sqrt(tan^2theta)) sec theta tan theta \ d theta

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = int \ sec theta \ d theta

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = ln | sec theta + tan theta | + C

And if we restore the substitution we get:

int \ 1/sqrt(t^2-9) \ dt = ln | t/3 + sqrt((t/3)^2-1) | + C

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = ln | 1/3(t+sqrt(t^2-9)) | + C

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = ln | t+sqrt(t^2-9) | + ln(1/3) + C

So then we return to the definite integral:

I = [ \ \ ln | t + sqrt(t^2-9) | \ \ ]_4^6

\ \ = ln | 6+sqrt(36-9)| - ln | 4+sqrt(16-9)|

\ \ = ln ( 6+sqrt(27)) - ln (4+sqrt(7))

\ \ = ln ( ( 6+sqrt(27))/(4+sqrt(7)) )

\ \ ~~ 0.5215924...

May 9, 2018

I=ln((6+sqrt27)/(4+sqrt7))

Explanation:

We know that,

color(red)(int1/sqrt(x^2-a^2)dx=ln|x+sqrt(x^2-a^2)|+c

Here,

I=int_4^6 1/sqrt(t^2-9)dt

=int_4^6 1/sqrt(t^2-(3)^2)dt

=color(red)([ln|t+sqrt(t^2-3^2)|]_4^6

=ln|6+sqrt(6^2-3^2)|-ln|4+sqrt(4^2-3^2)|

=ln|6+sqrt27|-ln|4+sqrt7|

I=ln((6+sqrt27)/(4+sqrt7))

From the graph ,we can say that f(t)=1/sqrt(t^2-9)
is continuous on[4,6]

graph{1/sqrt(x^2-9) [-3.77, 6.23, -0.7, 4.3]}