What is the integral of int secx/tan^2x dx∫secxtan2xdx?
1 Answer
Jun 14, 2018
Explanation:
Let's rewrite the integrand:
intsecx/tan^2xdx=int(1/cosx)/(sin^2x/cos^2x)dx=intcosx/sin^2x∫secxtan2xdx=∫1cosxsin2xcos2xdx=∫cosxsin2x
Here, recognize that
Another way we can solve
intcosx/sin^2xdx=intu^-2du=-u^-1+C=-1/sinx+C=-cscx+C∫cosxsin2xdx=∫u−2du=−u−1+C=−1sinx+C=−cscx+C .