What is int (2x)/(x^2+6x+13) dx∫2xx2+6x+13dx?
1 Answer
Explanation:
A slightly different approach:
Since the derivative of the denominator is
=int(2x+6-6)/(x^2+6x+13)dx=∫2x+6−6x2+6x+13dx
Split the fraction:
=int(2x+6)/(x^2+6x+13)dx-int6/(x^2+6x+13)dx=∫2x+6x2+6x+13dx−∫6x2+6x+13dx
For the first integral, let
This gives us
int1/udu-6int1/(x^2+6x+13)dx∫1udu−6∫1x2+6x+13dx
=lnabsu-6int1/(x^2+6x+13)dx=ln|u|−6∫1x2+6x+13dx
=ln(x^2+6x+13)-6int1/(x^2+6x+13)dx=ln(x2+6x+13)−6∫1x2+6x+13dx
Note that the absolute value signs are no longer necessary since
For the next integral, complete the square in the denominator.
ln(x^2+6x+13)-6int1/((x+3)^2+4)dxln(x2+6x+13)−6∫1(x+3)2+4dx
We will want to make this resemble the arctangent integral:
int1/(u^2+1)du=arctan(u)+C∫1u2+1du=arctan(u)+C
Focusing on just
=int(1/4)/((x+3)^2/4+4/4)dx=1/4int1/((x+3)^2/4+1)dx=∫14(x+3)24+44dx=14∫1(x+3)24+1dx
To make this resemble
=1/4int1/(u^2+1)dx=14∫1u2+1dx
To achieve a
=1/2int(1/2)/(u^2+1)dx=1/2int1/(u^2+1)du=1/2arctan(u)+C=12∫12u2+1dx=12∫1u2+1du=12arctan(u)+C
Pulling this together,
int1/((x+3)^2+4)dx=1/2arctan((x+3)/2)+C∫1(x+3)2+4dx=12arctan(x+32)+C
Combining this with the expression we came up with earlier, we see that the original integral equals
=ln(x^2+6x+13)-6int1/(x^2+6x+13)dx=ln(x2+6x+13)−6∫1x2+6x+13dx
=ln(x^2+6x+13)-6(1/2)arctan((x+3)/2)+C=ln(x2+6x+13)−6(12)arctan(x+32)+C
=ln(x^2+6x+13)-3arctan((x+3)/2)+C=ln(x2+6x+13)−3arctan(x+32)+C