What is int (2x)/(x^2+6x+13) dx2xx2+6x+13dx?

1 Answer
Apr 28, 2016

ln(x^2+6x+13)-3arctan((x+3)/2)+Cln(x2+6x+13)3arctan(x+32)+C

Explanation:

A slightly different approach:

Since the derivative of the denominator is 2x+62x+6, make the following modification to the numerator:

=int(2x+6-6)/(x^2+6x+13)dx=2x+66x2+6x+13dx

Split the fraction:

=int(2x+6)/(x^2+6x+13)dx-int6/(x^2+6x+13)dx=2x+6x2+6x+13dx6x2+6x+13dx

For the first integral, let u=x^2+6x+13u=x2+6x+13 and du=(2x+6)dxdu=(2x+6)dx.

This gives us

int1/udu-6int1/(x^2+6x+13)dx1udu61x2+6x+13dx

=lnabsu-6int1/(x^2+6x+13)dx=ln|u|61x2+6x+13dx

=ln(x^2+6x+13)-6int1/(x^2+6x+13)dx=ln(x2+6x+13)61x2+6x+13dx

Note that the absolute value signs are no longer necessary since x^2+6x+13>0x2+6x+13>0 for all values of xx.

For the next integral, complete the square in the denominator.

ln(x^2+6x+13)-6int1/((x+3)^2+4)dxln(x2+6x+13)61(x+3)2+4dx

We will want to make this resemble the arctangent integral:

int1/(u^2+1)du=arctan(u)+C1u2+1du=arctan(u)+C

Focusing on just int1/((x+3)^2+4)dx1(x+3)2+4dx, we divide everything by 44.

=int(1/4)/((x+3)^2/4+4/4)dx=1/4int1/((x+3)^2/4+1)dx=14(x+3)24+44dx=141(x+3)24+1dx

To make this resemble int1/(u^2+1)du1u2+1du, we set u=(x+3)/2u=x+32.

=1/4int1/(u^2+1)dx=141u2+1dx

To achieve a dudu value, first note that du=1/2dxdu=12dx. Multiply the interior of the integral by 1/212 and the exterior by 22.

=1/2int(1/2)/(u^2+1)dx=1/2int1/(u^2+1)du=1/2arctan(u)+C=1212u2+1dx=121u2+1du=12arctan(u)+C

Pulling this together,

int1/((x+3)^2+4)dx=1/2arctan((x+3)/2)+C1(x+3)2+4dx=12arctan(x+32)+C

Combining this with the expression we came up with earlier, we see that the original integral equals

=ln(x^2+6x+13)-6int1/(x^2+6x+13)dx=ln(x2+6x+13)61x2+6x+13dx

=ln(x^2+6x+13)-6(1/2)arctan((x+3)/2)+C=ln(x2+6x+13)6(12)arctan(x+32)+C

=ln(x^2+6x+13)-3arctan((x+3)/2)+C=ln(x2+6x+13)3arctan(x+32)+C