What is the integral of int sin^3x/cos^2x dx?

1 Answer
Jan 27, 2016

I found: 1/cos(x)+cos(x)+c

Explanation:

Let us try writing it as:
int(sin(x)*sin^2(x))/(cos^2(x))dx=
=int(sin(x)(1-cos^2(x)))/(cos^2(x))dx=
=int(sin(x))/(cos^2(x))dx-intsin(x)(cancel(cos^2(x)))/cancel((cos^2(x)))dx=
let us use a little manipulation into the first integral:
=-int(d[cos(x)])/cos^2(x)-intsin(x)dx=
=-int(cos(x))^-2d[cos(x)]-intsin(x)dx=
=(cos(x))^-1+cos(x)+c=1/cos(x)+cos(x)+c