What is int tan(2x-3)-cot(3x) ?

1 Answer
Jan 3, 2016

-1/2ln(cos(2x-3)) - 1/3ln(sin(3x)) + C

Explanation:

I= int(tan(2x-3) - cot(3x))dx
I =inttan(2x-3)dx - int(cot(3x)dx
I =int sin(2x-3)/cos(2x-3)dx - int cos(3x)/sin(3x)dx
I=I_1 - I_2
Let us name the two integrals as I_1 and I_2
and solve them separately.

I_1 = int sin(2x-3)/cos(2x-3) dx

Let us solve this first

Let u=cos(2x-3)
Diffrentiating with respect to x using chain rule.

(du)/dx = -sin(2x-3)d/dx(2x-3)
(du)/dx = -sin(2x-3)(2)
(du)/dx = -2sin(2x-3)
du = -2sin(2x-3)dx
(du)/-2 = sin(2x-3)dx
I_1 = int 1/u ((du)/-2)
I_1 = -1/2int (du)/u
I_1 = -1/2ln(u)
I_1 = -1/2 ln(cos(2x-3))

I_2 = intcos(3x)/sin(3x) dx
Let u=sin(3x)
Differentiating with respect to x using chain rule.

(du)/dx = cos(3x)d/dx(3x)
(du)/dx = cos(3x)3
(du)/dx =3cos(3x)
(du)/3 = cos(3x)dx

I_2 = int1/u ((du)/3)
I_2 = 1/3 int (du)/u
I_2 = 1/3 ln(u)

I_2 = 1/3 ln(sin(3x))

We had got till the step I=I_1-I_2

-1/2ln(cos(2x-3)) - 1/3ln(sin(3x)) + C Answer