What is int xsin3x ∫xsin3x? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Sihan Tawsik Jan 30, 2016 -(x^2cos3x)/3-1/9sin3x+c−x2cos3x3−19sin3x+c Explanation: intxsin3xdx∫xsin3xdx =x intsin3xdx-int[d/(dx)(x) intsin3 xdx]dx=x∫sin3xdx−∫[ddx(x)∫sin3xdx]dx =-x^2(cos3x)/3-int[(cos3x)/3]dx=−x2cos3x3−∫[cos3x3]dx =-(x^2cos3x)/3-1/3(sin3x)/3+c =−x2cos3x3−13sin3x3+c =-(x^2cos3x)/3-1/9sin3x+c=−x2cos3x3−19sin3x+c Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx∫cos5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt∫sin2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx∫(1+cos(x))2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx∫tan2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 3001 views around the world You can reuse this answer Creative Commons License