Evaluate the integral I = int_(pi/4)^(pi/2) \ 1/sinx \ dx ?

1 Answer
Jun 23, 2017

int_(pi/4)^(pi/2) \ 1/sinx \ dx = ln (sqrt(2) +1) = 0.88137 (5dp)

Explanation:

We want to evaluate:

I = int_(pi/4)^(pi/2) \ 1/sinx \ dx
\ \ = int_(pi/4)^(pi/2) \ cscx \ dx

The integral is a standard which can be looked up, to get

I = [-ln|cscx+cotx|]_(pi//4)^(pi//2)

\ \ = [ln|cscx+cotx|]_(pi//2)^(pi//4)

\ \ = ln abs(csc(pi/4) +cot(pi/4)) - ln abs(csc(pi/2) +cot(pi/2))

\ \ = ln abs(sqrt(2) +1) - ln abs(1 +0)

\ \ = ln (sqrt(2) +1)

\ \ = 0.88137 (5dp)