Evaluate the integral I = int_(pi/4)^(pi/2) \ 1/sinx \ dx ?
1 Answer
Jun 23, 2017
int_(pi/4)^(pi/2) \ 1/sinx \ dx = ln (sqrt(2) +1) = 0.88137 (5dp)
Explanation:
We want to evaluate:
I = int_(pi/4)^(pi/2) \ 1/sinx \ dx
\ \ = int_(pi/4)^(pi/2) \ cscx \ dx
The integral is a standard which can be looked up, to get
I = [-ln|cscx+cotx|]_(pi//4)^(pi//2)
\ \ = [ln|cscx+cotx|]_(pi//2)^(pi//4)
\ \ = ln abs(csc(pi/4) +cot(pi/4)) - ln abs(csc(pi/2) +cot(pi/2))
\ \ = ln abs(sqrt(2) +1) - ln abs(1 +0)
\ \ = ln (sqrt(2) +1)
\ \ = 0.88137 (5dp)