Evaluate the integral # I = int_(pi/4)^(pi/2) \ 1/sinx \ dx #?

1 Answer
Jun 23, 2017

# int_(pi/4)^(pi/2) \ 1/sinx \ dx = ln (sqrt(2) +1) = 0.88137 # (5dp)

Explanation:

We want to evaluate:

# I = int_(pi/4)^(pi/2) \ 1/sinx \ dx #
# \ \ = int_(pi/4)^(pi/2) \ cscx \ dx #

The integral is a standard which can be looked up, to get

# I = [-ln|cscx+cotx|]_(pi//4)^(pi//2) #

# \ \ = [ln|cscx+cotx|]_(pi//2)^(pi//4) #

# \ \ = ln abs(csc(pi/4) +cot(pi/4)) - ln abs(csc(pi/2) +cot(pi/2))#

# \ \ = ln abs(sqrt(2) +1) - ln abs(1 +0)#

# \ \ = ln (sqrt(2) +1)#

# \ \ = 0.88137 # (5dp)