If you have intsin^2(x)dx you can integrate by parts after rearranging your integrand:
intsin^2(x)dx=intsin(x)sin(x)dx=
by parts where you have:
intf(x)*g(x)dx=F(x)*g(x)-intF(x)*g'(x)dx
Where:
F(x)=intf(x)dx
g'(x) is the derivative of g(x)
=sin(x)(-cos(x))-int(-cos(x))cos(x)dx=
=sin(x)(-cos(x))+intcos^2(x)dx=
but: cos^2(x)=1-sin^2(x) and your integral becomes:
=sin(x)(-cos(x))+int(1-sin^2(x))dx=
=sin(x)(-cos(x))+int1dx-intsin^2(x)dx
So basically you can write:
intsin^2(x)dx=sin(x)(-cos(x))+int1dx-intsin^2(x)dx
Taking the integral with sin^2(x) from the right to the left (as in a normal equation) yuo get:
2intsin^2(x)dx=sin(x)(-cos(x))+int1dx
and finally:
intsin^2(x)dx=(sin(x)(-cos(x))+x)/2+c