How do you evaluate this trig integral int 340cos^4(20x) dx340cos4(20x)dx?

1 Answer
May 15, 2018

I=17/32[240x+8sin(40x)+4sin(80x)]+cI=1732[240x+8sin(40x)+4sin(80x)]+c

Explanation:

We know that,

color(red)((1)cos^2theta=(1+cos2theta)/2(1)cos2θ=1+cos2θ2

color(blue)((2)intcosAxdx=1/AsinAx+c(2)cosAxdx=1AsinAx+c

Here,

I=int340cos^4(20x)dxI=340cos4(20x)dx

Subst. , 20x=u=>x=u/20=>dx=1/20du20x=ux=u20dx=120du

So,

I=int340cos^4uxx1/20duI=340cos4u×120du

=17int (cos^2u)^2du...toApply(1)

=17int((1+cos2u)/2)^2

=17/4int(1+2cos2u+cos^2 2u)du

=17/4int[1+2cos2u+(1+cos4u)/2]

=17/8int[2+4cos2u+1+cos4u]du

=17/8int[3+4cos2u+cos4u]du...toApply(2)

=17/8[3u+(4sin2u)/2+(sin4u)/4]+c

=17/32[12u+8sin2u+sin4u]+c

Subst. back , u=20x

I=17/32[12(20x)+8sin2(20x)+4sin4(20x)]+c

I=17/32[240x+8sin(40x)+4sin(80x)]+c