We know that,
color(red)((1)cos^2theta=(1+cos2theta)/2(1)cos2θ=1+cos2θ2
color(blue)((2)intcosAxdx=1/AsinAx+c(2)∫cosAxdx=1AsinAx+c
Here,
I=int340cos^4(20x)dxI=∫340cos4(20x)dx
Subst. , 20x=u=>x=u/20=>dx=1/20du20x=u⇒x=u20⇒dx=120du
So,
I=int340cos^4uxx1/20duI=∫340cos4u×120du
=17int (cos^2u)^2du...toApply(1)
=17int((1+cos2u)/2)^2
=17/4int(1+2cos2u+cos^2 2u)du
=17/4int[1+2cos2u+(1+cos4u)/2]
=17/8int[2+4cos2u+1+cos4u]du
=17/8int[3+4cos2u+cos4u]du...toApply(2)
=17/8[3u+(4sin2u)/2+(sin4u)/4]+c
=17/32[12u+8sin2u+sin4u]+c
Subst. back , u=20x
I=17/32[12(20x)+8sin2(20x)+4sin4(20x)]+c
I=17/32[240x+8sin(40x)+4sin(80x)]+c