How do you integrate # sec^3x (tanx) dx#?
1 Answer
Oct 4, 2016
Explanation:
When working with integrals of secant and tangent, it's important to remember the following:
#d/dxtanx=sec^2x# #d/dxsecx=secxtanx#
Here, we see that we can write
#intsec^3x(tanx)dx=intsec^2x(secxtanx)dx#
With
#=intu^2du=u^3/3+C=sec^3x/3+C#