How do you find the integral of int (cos(1/t))/(t^2)dt?
1 Answer
Apr 26, 2018
int \ (cos(1/t))/t^2 \ dt = -sin(1/t) + C
Explanation:
We seek:
I = int \ \ (cos(1/t))/t^2 \ dt
We can perform a substitution, Let:
u=1/t => (du)/dt = -1/t^2
Then we can transform the integral:
I = int \ \ (cos(u))/(-1) \ du
\ \ = -sin u + C
Then, restoring the substitution, we get:
I = -sin(1/t) + C