How do you find the integral of int (cos(1/t))/(t^2)dt?

1 Answer
Apr 26, 2018

int \ (cos(1/t))/t^2 \ dt = -sin(1/t) + C

Explanation:

We seek:

I = int \ \ (cos(1/t))/t^2 \ dt

We can perform a substitution, Let:

u=1/t => (du)/dt = -1/t^2

Then we can transform the integral:

I = int \ \ (cos(u))/(-1) \ du
\ \ = -sin u + C

Then, restoring the substitution, we get:

I = -sin(1/t) + C