How do you find the antiderivative of tan(6x)dxtan(6x)dx?

2 Answers
Apr 13, 2018

I=1/6ln|sec6x|+cI=16ln|sec6x|+c

Explanation:

We know that
inttanXdX=ln|secX|+ctanXdX=ln|secX|+c
Here,
I=inttan6xdxI=tan6xdx
Let, 6x=u=>x=u/6=>dx=1/6du6x=ux=u6dx=16du
So,
I=inttanu1/6duI=tanu16du
=1/6inttanudu=16tanudu
=1/6ln|secu|+c ,where, u=6x=16ln|secu|+c,where,u=6x
=1/6ln|sec6x|+c=16ln|sec6x|+c

Apr 13, 2018

(ln|sec(x)|)/6+Cln|sec(x)|6+C

Explanation:

We need to find the anti-derivative of tan(6x)tan(6x), and that will be its integral, i.e. inttan(6x) \ dx.

So, we gonna use u-substitution here.

Let u=6x,:.du=6 \ dx,dx=(du)/6

Then,

inttan(6x) \ dx

=inttanu \ (du)/6

Taking out the constant, we get,

=1/6inttanu \ du

Now, notice that inttanu \ du=ln|sec(x)|+C.

And so, we get,

=1/6*ln|sec(x)|+C

=(ln|sec(x)|)/6+C