What is the integral of arctanx/x^2arctanxx2?

1 Answer
Sep 13, 2016

lnabs(x/sqrt(1+x^2))-arctan(x)/x+Clnx1+x2arctan(x)x+C

Explanation:

We have:

I=intarctan(x)/x^2dx=intx^-2arctan(x)dxI=arctan(x)x2dx=x2arctan(x)dx

We will use integration by parts, which takes the form: intudv=uv-intvduudv=uvvdu

Let:

{(u=arctan(x)" "=>" "du=dx/(1+x^2)),(dv=x^-2" "=>" "v=-x^-1=-1/x):}

Thus the original integral equals:

I=-arctan(x)/x+intdx/(x(1+x^2))

Letting J=intdx/(x(1+x^2)). This can be solved using partial fractions but I prefer trigonometric substitution. Here, let x=tan(theta). Note that dx=sec^2(theta)d theta. Thus:

J=int(sec^2(theta)d theta)/(tan(theta)(1+tan^2(theta)))

Note that 1+tan^2(theta)=sec^2(theta):

J=int(sec^2(theta)d theta)/(tan(theta)(sec^2(theta)))=intcot(theta)d theta=lnabssin(theta)

Note that since x=tan(theta), we see that cot(theta)=1/x. Note that csc(theta)=sqrt(cot^2(theta)+1)=sqrt(1/x^2+1)=sqrt(1+x^2)/absx. Furthermore, we see that sin(theta)=1/csc(theta)=absx/sqrt(1+x^2). Thus:

J=lnabs(x/sqrt(1+x^2))

Therefore:

I=lnabs(x/sqrt(1+x^2))-arctan(x)/x+C