What is the integral of #arctanx/x^2#?
1 Answer
Explanation:
We have:
#I=intarctan(x)/x^2dx=intx^-2arctan(x)dx#
We will use integration by parts, which takes the form:
Let:
#{(u=arctan(x)" "=>" "du=dx/(1+x^2)),(dv=x^-2" "=>" "v=-x^-1=-1/x):}#
Thus the original integral equals:
#I=-arctan(x)/x+intdx/(x(1+x^2))#
Letting
#J=int(sec^2(theta)d theta)/(tan(theta)(1+tan^2(theta)))#
Note that
#J=int(sec^2(theta)d theta)/(tan(theta)(sec^2(theta)))=intcot(theta)d theta=lnabssin(theta)#
Note that since
#J=lnabs(x/sqrt(1+x^2))#
Therefore:
#I=lnabs(x/sqrt(1+x^2))-arctan(x)/x+C#