What is the integral of arctanx/x^2arctanxx2?
1 Answer
Explanation:
We have:
I=intarctan(x)/x^2dx=intx^-2arctan(x)dxI=∫arctan(x)x2dx=∫x−2arctan(x)dx
We will use integration by parts, which takes the form:
Let:
{(u=arctan(x)" "=>" "du=dx/(1+x^2)),(dv=x^-2" "=>" "v=-x^-1=-1/x):}
Thus the original integral equals:
I=-arctan(x)/x+intdx/(x(1+x^2))
Letting
J=int(sec^2(theta)d theta)/(tan(theta)(1+tan^2(theta)))
Note that
J=int(sec^2(theta)d theta)/(tan(theta)(sec^2(theta)))=intcot(theta)d theta=lnabssin(theta)
Note that since
J=lnabs(x/sqrt(1+x^2))
Therefore:
I=lnabs(x/sqrt(1+x^2))-arctan(x)/x+C