How do you find the integral of cscn(x) if m or n is an integer?

2 Answers
Oct 20, 2016

There is no m in the integral. To evaluate cscn(x)dx for integer n use the reduction formula:

Explanation:

cscn(x)dx=1n1cotxcscn2x+n2n1cscn2xdx

Repeat until you get csc2xdx which is cotx or you get cscxdx which is ln|cscxcotx|

Oct 22, 2016

cscn(x)dx=n2n1cscn2(x)dxcot(x)cscn2(x)n1

Explanation:

If we want to derive the reduction formula:

I=cscn(x)dx=cscn2(x)csc2(x)dx

Now, perform integration by parts on this, taking the form udv=uvvdu.

Let u=cscn2(x). Differentiating this gives:

du=(n2)cscn3(x)(csc(x)cot(x))dx

du=(n2)cscn2(x)cot(x)dx

And let dv=csc2(x). Integrating this gives v=cot(x).

Plugging these in yields:

I=cot(x)cscn2(x)(n2)cscn2(x)cot2(x)dx

Now, through the Pythagorean identity, let cot2(x)=csc2(x)1.

I=cot(x)cscn2(x)(n2)cscn2(x)(csc2(x)1)dx

Distributing which gives:

I=cot(x)cscn2(x)(n2)cscn(x)dx+(n2)cscn2(x)dx

Since cscn(x)dx=I:

I=cot(x)cscn2(x)(n2)I+(n2)cscn2(x)dx

Adding (n2)I to both sides (this is weird to think about):

(n1)I=cot(x)cscn2(x)+(n2)cscn2(x)dx

Solving for I=cscn(x)dx:

cscn(x)dx=cot(x)cscn2(x)n1+n2n1cscn2(x)dx

And then repeat this with cscn2(x)dx until it's either csc2(x)dx=cot(x) or csc(x)dx=ln|cot(x)+csc(x)|.