How do you find the integral of ∫cscn(x) if m or n is an integer?
2 Answers
There is no
Explanation:
Repeat until you get
Explanation:
If we want to derive the reduction formula:
I=∫cscn(x)dx=∫cscn−2(x)csc2(x)dx
Now, perform integration by parts on this, taking the form
Let
du=(n−2)cscn−3(x)⋅(−csc(x)cot(x))dx
du=−(n−2)cscn−2(x)cot(x)dx
And let
Plugging these in yields:
I=−cot(x)cscn−2(x)−(n−2)∫cscn−2(x)cot2(x)dx
Now, through the Pythagorean identity, let
I=−cot(x)cscn−2(x)−(n−2)∫cscn−2(x)(csc2(x)−1)dx
Distributing which gives:
I=−cot(x)cscn−2(x)−(n−2)∫cscn(x)dx+(n−2)∫cscn−2(x)dx
Since
I=−cot(x)cscn−2(x)−(n−2)I+(n−2)∫cscn−2(x)dx
Adding
(n−1)I=−cot(x)cscn−2(x)+(n−2)∫cscn−2(x)dx
Solving for
∫cscn(x)dx=−cot(x)cscn−2(x)n−1+n−2n−1∫cscn−2(x)dx
And then repeat this with